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Abstract

We describe a system developed for the Cate-
gorization task of the Text Retrieval Conference
(TREC) 2005 Genomics track, and experiments
we conducted in the process of developing our
system. Our research effort for this task explored
the hypothesis that more accurate predictions
could be achieved by considering only selected
passages in the documents being processed. We
investigated methods that involve (i) basing clas-
sifications on selected passages from test articles,
and (ii) adjusting the classifier training process
such that certain putatively relevant passages af-
fect the learned model more than other passages.
Whereas the first approach was effective at im-
proving predictive accuracy in our experiments,
the latter approach was not.

1. Introduction

There are now more than 700 on-line, publicly avail-
able databases focusing on some aspect of molecular
biology (Bateman, 2005). Most of these databases re-
quire a high degree of continual effort by scientists
to curate them. For example, most of the model-
organism databases, such as the Mouse Genome Infor-
matics (MGI) databases (Eppig et al., 2005), employ
a team of PhD-level biologists to read the scientific lit-
erature and then manually enter relevant information
into the databases. The Categorization task of the
2005 TREC Genomics track was aimed at investigat-
ing methods that might help these human curators fil-
ter the scientific literature to identify articles relevant
to the curation process. In this paper we describe the
approaches we investigated in the course developing a

Appears in Proceedings of the 2005 Text Retrieval Confer-
ence (TREC).

system for the Categorization task.

The Categorization task involves making the follow-
ing decisions. Given the full text of a scientific arti-
cle, a system should decide whether the article would
support curation in each the following four categories:
(1) Gene Ontology annotation (The Gene Ontology
Consortium, 2000), (2) the Mouse Tumor Biology
Database (3) the Gene Expression Database, and (4)
the Alleles and Phenotypes category of the Mouse
Genome Database. Since the categories are not mu-
tually exclusive, an article may be classified into any
number of categories between zero and four. The train-
ing set consists of 5,837 articles from Journal of Bio-

logical Chemistry, Journal of Cell Biology, and Pro-

ceedings of the National Academy of Science. The test
set consists of 6,403 articles from the same journals.

Our research effort for this task is based on the con-
jecture that, for most of these curation decisions, only
a fraction of each given document is relevant to the
classification. Therefore, we investigate methods that
involve (i) basing classifications on selected passages
from test articles, and (ii) adjusting the classifier train-
ing process such that certain putatively relevant pas-
sages affect the learned model more than other pas-
sages. We consider as a baseline a method that makes
classifications by considering the entirety of each arti-
cle, and is trained by equally weighting all parts of all
training articles.

2. Making Classifications with Selected

Paragraphs

In this section, we present our approach and experi-
ments for categorizing articles by having the classifier
base its decisions only on selected passages from a test
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article. The hypothesis motivating this line of research
is that we can attain more accurate classifications by
making such “localized” decisions.

2.1. Methods

Our approach for classifying an article using selected
paragraphs involves four steps:

1. The article is segmented into paragraphs using
SGML tags and regular expressions.

2. The content of each paragraph is described using
a bag-of-words representation.

3. A learned statistical model is used to compute
the probability that each paragraph belongs to
the positive class.

4. From a subset of these paragraph-level probabil-
ities, the probability of the positive class for the
document as a whole is computed.

After segmenting a given article into paragraphs, each
paragraph is processed in the following manner. We
strip away all remaining SGML tags and replace Uni-
code entities by ASCII equivalents or representative
strings. The resulting plain text is tokenized using
a regular expression that allows words to include hy-
phens and numeric characters. To reduce the size
of our vocabulary, we ignore case and remove stop-
words. We then represent each paragraph using a bag-
of-words representation.

We train our classification models using a maximum
entropy method (Nigam et al., 1999). In these models,
the probability of class c for document d is defined as:

P (c|d) =
1

Zd

exp(
∑

i

λifi(d, c))

where Zd is a normalizing factor over all possible label-
ings of d (to ensure a proper probability in the range
[0,1]), and each λi is a real-valued weight associated
with feature fi.

The key idea of maximum entropy methods is that
the model should prefer the most uniform distribution
that satisfies given constraints. In this case, maximum
entropy enforces the constraint that the model has the
same expected value for each feature as does the train-
ing set:

1

|D|

∑

d∈D

fi(d, cd) =
1

|D|

∑

d∈D

∑

c

P (c|d)fi(d, c).

Here, D represents the training set, cd is the class of
document d, and P (c|d) represents the model’s estima-
tion of the conditional probability of class c given doc-
ument d. For training, we use a quasi-Newton method
called L-BFGS that converges to a global optimum.
Since the classes of interest are not mutually exclu-
sive, we train a separate model for each class.

We hypothesize that, in any given document, some
paragraphs contain more information pertaining to the
correct labeling of the document than do others. We
investigate this possibility by considering systems that
select the most informative paragraphs from full-text
articles and make document-level predictions based on
these selections. The metric we use for identifying in-
formative paragraphs is the posterior probability for
the positive class predicted by our maximum entropy
models. In particular, we consider an approach that
classifies articles by considering the top-n paragraphs,
ranked according to the posterior probability of the
positive class. The estimated probability that an arti-
cle belongs to the positive class, under this approach, is
the average probability across these top-n paragraphs.

Our implementation was written in Java and Perl, and
included classes from the MALLET library (McCal-
lum, 2002). MALLET implements the maximum en-
tropy classification model as well as several of the pre-
processing pipelines we use.

2.2. Empirical Evaluation

We evaluate our approach using four-fold cross-
validation within the training set. For each of the
classification tasks, we consider the following three ap-
proaches:

• A baseline approach that involves training and
classifying articles without any regard for para-
graph boundaries. Specifically, documents are not
segmented in this approach, and document-level
class probabilities are computed in the same man-
ner as paragraph-level class probabilities in the
other approaches. We refer to this baseline as the
Fulltext approach.

• An approach that trains paragraph-level models
and classifies a test article using the Top-n proce-
dure described above. For most experiments re-
ported here, n = 5.

• An approach that operates similarly, but that sets
n = L, where L is the number of paragraphs in a
given test document. In other words, these models
consider the classification decisions made for all
paragraphs in a given test document. We refer to
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Figure 1. Classifier utilities for models that make classifi-
cations based on whole articles (Fulltext and All paragraphs)
and selected paragraphs (Top-5 paragraphs). The reported
values are average test-set utilities from a cross-validation
experiment.

this as the All paragraphs method.

As in the official TREC evaluation, we measure clas-
sifier performance by computing utility, defined as

Uraw = (ur × TP ) + (unr × FP ),

where TP is the count of true positives and FP is the
count of false positives. The coefficients ur and unr

are category-specific weights (or “relative utilities”)
chosen to account for the varying number of positive
instances across categories. These weights are defined
as follows:

unr = −1, ur =
AN

AP
,

where AN and AP are the total counts of actual neg-
ative and positive instances, respectively.

Figure 1 shows the measured utility of these three ap-
proaches for all four classification tasks. The Top-n

classifiers provide better utility than the baseline mod-
els for all tasks. This result supports our hypothe-
sis. The results for the All-paragraphs control (Top-n

with n = L) indicate that success of the Top-n method
is due to its focus on a small number of paragraphs,
rather than some other aspect of its paragraph-based
representation.

3. Making Classifications using

Paragraph Distributions

Representing the collection of paragraph-level proba-
bilities by their mean discards information about the
distribution of those probabilities. Analysis of the

Metaclassifier: Top-4Metaclassifier: AllTop-5 paragraphs
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Figure 3. Results of metaclassifier experiments (Metaclassi-

fier:All and Metaclassifier:Top-4) compared to simple mean
results from Figure 1 (Top-5 paragraphs).

training data suggests that the shape of this distri-
bution might be informative in predicting class la-
bels. Figure 2 compares the average distribution
of paragraph-level probabilities in positive documents
against the average distribution in negative documents
for the Allele task. The graph on the left illustrates
that these average distributions differ in shape as well
as mean. The graph on the right shows the plain con-
trast that appears when we plot distributions for only
the top five paragraphs, as considered in the previous
section. We hypothesize that using a representation
of this entire distribution for a given documents may
be more predictive of class labels than the Top-n ap-
proach presented in the previous section.

3.1. Methods

To try to take advantage of this difference in distribu-
tions for positive and negative articles, we train a sec-
ondary statistical model to discriminate between the
two. The feature vector for this “metaclassifier” is gen-
erated by using an integer-valued feature to represent
each bin in a discrete representation of the distribu-
tion. The value of the feature is the count of para-
graphs that have probabilities in the corresponding in-
terval. The metaclassifier models, like the paragraph
classification models, are trained using a maximum en-
tropy approach.

3.2. Empirical Evaluation

Figure 3 compares the performance of this strategy,
with and without paragraph selection, to those of the
baseline and the simple mean approach of the previ-
ous section. We consider two variants of the meta-
classifier: one that represents the distribution of all
paragraphs in a given document, and one that repre-
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Figure 2. The average distribution of paragraphs in positive and negative documents for the Allele task, with respect to
classifier output. The left side of the figure shows the distributions for all paragraphs and the right side of the figure
shows the distributions for Top-5 paragraphs.

sents the distribution of only the top-four paragraphs
as determined by a ranking on the predicted poste-
rior probability of the positive class. The results in
Figure 3 show that the distribution metaclassifiers do
not result in higher utilities than the simple Top-n ap-
proach for any of the tasks. This result suggests that
the metaclassifier models are susceptible to overfitting.

4. Training Classifiers with Selected

Paragraphs

So far, we have discussed making localized decisions
by focusing the models’ attention on important pas-
sages during classification. Another way of localizing
the classifier is to focus the models’ attention to impor-
tant passages during training. One way of accomplish-
ing this is by employing an expectation-maximization
(EM) algorithm (Dempster et al., 1977), which is an
approach to finding likelihood estimates for parame-
ters in probabilistic settings with hidden variables.

4.1. Methods

In our setting, the hidden variables represent the ex-
tent to which individual paragraphs should be treated
as a positive instances during training. Our approach
employs one hidden variable for each paragraph in a
positive document. We assume that all paragraphs in
a negative document really are negative, and thus there
are no hidden variables for these cases.

In the E-step, we use the current model to estimate the
probability that each paragraph in a given document
is positive (i.e., contains text relevant to the document
being positive). Formally, we compute:

zij = P (cij = 1|dij ; θ
(t))

where zij is the hidden variable associated with the
jth paragraph in the ith positive document, cij is the
unknown class label of the paragraph (1 for positive, 0
for negative), dij represents the text of the paragraph,
and θ(t) represents the model parameters on the tth
iteration of the EM procedure.

Occasionally, there may be no paragraphs that appear
positive for a given training document that is known
to be positive. To test and correct for this, we sum the
model’s output for all paragraphs in a document. If
the sum is less than some threshold k, we re-normalize
weights to sum to k. In other words, we enforce the
constraint:

∀i∈pos

∑

j

zij ≥ k.

The assumption here is that a positive document has
at least k paragraphs that are relevant to its class. For
the experiments reported here, we set k = 2.

In the M-step, the classifier is re-trained using
paragraph instances subject to the newly estimated
weights. This entails the following optimization:

θ(t+1) =arg max
θ

∑

di∈pos

∑

j

[

zij log(P (cij = 1|θ)P (dij |cij = 1; θ)) +

(1 − zij) log(P (cij = 0|θ)P (dij |cij = 0; θ))
]

+
∑

di∈neg

∑

j

log(P (cij = 0|θ)P (dij |cij = 0; θ)).

4.2. Empirical Evaluation

We conduct an experiment in which we evaluate mod-
els trained with this EM approach using, as before,
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Figure 4. The effects of ten EM iterations on utility mea-
sure for the Allele task. The results are similar for the
other categories. Classifiers are trained using EM-weighted
paragraphs and evaluated against both full-text and Top-n
paragraphs.

a four-fold cross-validation methodology. The models
are initialized by training with the standard maximum
entropy approach described in Section 2. Before each
subsequent iteration of EM, the classifiers are applied
to the test fold, using both the Fulltext and Top-n clas-
sification methods, as described in Section 2. For these
experiments, n = 4.

Figure 4 shows the classification utility realized by
these two classification methods as a function of the
number of EM training iterations. Utility generally
drops immediately after EM re-weighting begins, and
while subsequent iterations show gradual improve-
ment, the models appear to converge before reaching
even the initial model’s utility. This result indicates
that the EM algorithm, as used here, either is not ef-
fective at identifying the most relevant paragraphs or
that there is no benefit in doing so during training. We
also note that the Top-n method of evaluation outper-
forms the Fulltext method in this context as well.

5. Official TREC Evaluation Results

To generate our final classifications for a given cate-
gory, we select those documents whose probability for
the positive label exceeds a fixed threshold. We choose
this threshold for each category by averaging the five
thresholds that yield the greatest normalized utility
from our four-fold cross-validated experiments.

We submitted runs from the Top-n classification ap-
proach described in Section 2 as an official run along
with the metaclassifier variation described in Section 3

Description Allele Expr. GO Tumor

Fulltext 0.7434 0.6012 0.4287 0.8160
Metaclassifier 0.7736 0.6548 0.4386 0.7833
Top-5 0.7725 0.7304 0.4572 0.8242
Track min 0.2009 -0.0074 -0.0342 0.0413
Track median 0.7785 0.6548 0.4575 0.7610
Track max 0.8710 0.8711 0.5870 0.9433

Table 1. Normalized utility scores of the three systems for
which we submitted runs on official TREC data. Also pre-
sented are the minimum, median, and maximum scores for
participants in each category.

and the baseline Fulltext system. Table 5 shows the
results of these methods as well as the minimum, me-
dian, and maximum scores from the official task eval-
uation. These results are consistent with the results of
the cross-validation experiments reported in Sections 2
and 3 in that the Top-5 models outperform the Full-

text and Metaclassifier models. The utility achieved by
our Top-5 models is close to the median score across
all four tasks.

6. Discussion and Future Work

We investigated three hypotheses in our efforts for the
Categorization task of the TREC Genomics track. The
first hypothesis, that we could get more accurate clas-
sifications by basing classification decisions on selected
paragraphs in test articles, was well supported by our
experiments. The second hypothesis was that we could
achieve more accurate classifications by employing a
rich representation of predicted paragraph-level class
probabilities. The third hypothesis was that we could
learn more accurate models by having the training pro-
cess put more emphasis on some paragraphs than oth-
ers. Neither of these latter two hypotheses were sup-
ported by our experimental results.

It is encouraging that we were able to successfully se-
lect relevant paragraphs using the crude metric of label
probabilities assigned by a statistical model, given that
the model was trained on un-segmented documents
marked only as positive or negative. In future work
we plan to explore an approach in which we consider
additional paragraph features, such as location, con-
text and rhetorical role, in deciding on the relevance
of the paragraph to the classification task at hand.

We also plan to investigate a multiple-instance ap-
proach (Dietterich et al., 1997) to the task of training
models for this task. The application of this type of
approach is motivated by the belief that, many of the
paragraphs in positive articles should not be treated



Classifying Biomedical Articles by Making Localized Decisions

as being representative of the positive class. This was
the same motivation that prompted our investigation
of the EM approach. In contrast the EM method,
however, the multiple-instance approach would iden-
tify putatively relevant paragraphs in a more super-
vised manner.
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